
Open NSPF
The Open NSPF facility enables you to modify and enhance Natural ISPF according to the specific needs of your
site. This is easily done by writing site-specific logic in user-exits, while keeping all the advantages of the Natural
ISPF environment such as split-screen, multi-session and command logic.

This section covers the following topics:

Overview
Common Subjects of Open NSPF Routines
Defining a User Object
Defining a User Command

Overview
Natural ISPF is an integrated product, that enables you to work with different external objects (such as PDS,
NATURAL, JOBS) in a unified environment. Hence, Natural ISPF functionality is provided by means of objects (for
example, PDS MEMBER) that are accessed by functions (for example, EDIT). The unified environment is presented
to the user by means of menus (such as the Administrator Menu) and commands (such as TECH).

Customized Menus:
Natural ISPF menus are built from a screen layout and a command related to each option. In Open NSPF, it is
possible to define new menus, to alter existing menus and change the default Main Menu. This option has
existed in Natural ISPF since Version 1.1 and is documented in the Natural ISPF Administration
Documentation. For example, you can add the option Predict to your Main Menu.
Customized Commands:
A Natural ISPF command can be executed from any place in Natural ISPF and is not related to any specific
object. Open NSPF enables you to define new commands. These commands are directed at user-written
subprograms. You can also use this facility to define command synonyms or to overwrite existing commands.
For example, you can define MAIL as a new command that checks whether there is mail waiting for you (in
Con-nect or another site-specific office system).
Customized Objects and Functions:
A Natural ISPF object usually references external objects or data which can be read, modified or edited (for
example, a library member). Each object can be identified by several fields. For example, the object PDS is
identified by the fields DSNAME, MEMBER, VOLSER and NODE. A Natural ISPF object can be related to
one or several (new or existing) functions such as EDIT, BROWSE. Each activation of a function for an object
invokes a Natural ISPF panel, a full screen that can be suspended and resumed according to Natural ISPF logic,
until it is terminated by the user, or by the logic of the function (for example, DELETE). For example, you can
add new object EMPLOYEE and relate it to functions LIST, DELETE and INFORMATION.

You can also add a new function and relate it to an existing object. Since Natural ISPF does not know the new
function, you have to maintain it in the object user exit and transfer control to another user-defined object, which
contains the logic to be executed (see also the subsection Object Exits in the Section User Exits in the Natural ISPF
Administration Documentation).

Customizing Natural ISPF

Natural ISPF architecture can be summarized by listing the following modules:

Nucleus:
The nucleus is responsible for all the common logic, for example, the logic supported by the following main
modules:

Command Processor:
The Command Processor interprets commands typed in by the user.

1Copyright Software AG 2002

Open NSPFOpen NSPF

Browser:
The Browser displays LIST/BROWSE/EDIT sessions on the screen.
Manager:
The Manager supports multiple sessions and split screen.

The nucleus is responsible for the screen I/O of the Editor, but not for the object-specific screens. The nucleus is
the main part of Natural ISPF. It is written mostly in Natural and executed from SYSLIB.

Natural ISPF tables:
The Natural ISPF tables are stored in the Natural system file and contain definitions such as the existing objects,
their names and synonyms, the functions, the commands, menus, user profiles etc. Natural ISPF is installed with
predefined tables, stored in the System Profile Library (SYSISPS1). Site-specific tables that can extend or
overwrite the predefined tables are stored in the User Profile Library (SYSISPFU).
Command Modules:
There is a module for each command, implementing the command logic. The command modules are written as
Natural subprograms, called from the Natural ISPF nucleus, and operate from SYSLIB.
Object Modules:
There is one module for each object, responsible for the logic specific to this object. For example, the PDS
module implements reading a member from a PDS library, writing it, deleting it, displaying the PDS entry
panel, displaying information screen etc. The object modules are written as Natural subprograms, called from
the Natural ISPF nucleus, and operate from SYSLIB.

This architecture can be illustrated as follows:

Multi-Operations Management

One of the attractive features of Natural ISPF is its multi-session management. A user can work in many sessions
simultaneously. For example, he can be editing a PDS member while looking at a JOB output. This is done using the
Natural ISPF Multi-Operation Environment. It is important to understand this mechanism in order to work properly
with Open NSPF.

An operation in Natural ISPF is a series of actions within a given context, that can be interspersed with other
operations (from the user point of view, an operation can be suspended and resumed). For example, an operation
could be issuing a direct command to edit a PDS member, changing a few lines, saving the member, and ending the
session. Other examples of operations in Natural ISPF are:

Copyright Software AG 20022

Open NSPFMulti-Operations Management

Performing a function for an object (for example, BROWSE JOB)
Activating a menu
Special nucleus operations (such as display of PF key assignments)

An operation in Natural ISPF is built of events, where each event is a piece of code that must be executed as a whole
(the operation cannot be suspended in the middle of an event). When an operation starts, a special area called
operation data is allocated, the data in this area is the only data that stays ’alive’ between the events of the
operation. This data is released when the operation ends. This operation data is the only place where data involving
the operation can ’live’ outside any event, and this is also the preferred communication area between events.

In Open NSPF, operations are involved when implementing customized objects. Note the following:

The operation starts when a direct command for a function is issued to this object (either by the user or by an
open module), or when a line command is issued from a list of this object type.
When an operation starts, the operation data is allocated, then a series of events for this object is issued, each
event is a CALLNAT to the object subprogram, where the operation data is passed as a parameter.
An operation ends when the command END is issued to it. This command can be issued by the user or by an
open-module.

Note:
A command is not an operation, as only a single call is made to the command module, and no operation data is
needed. Displaying a menu is internally an operation, but since it is handled by the nucleus, this is irrelevant to
the Open NSPF programmer.

User Objects and User Commands

Defining new user objects and new user commands is done by adding an object code or a command code to the Site
Control Table. User objects can additionally be related to existing Natural ISPF functions.

The Site Control Table resides in the User Profile Library and is usually called CONTROLU. It can be accessed for
update operations with the command EDIT CNF CONTROLU, or from the CONTROLU (Edit Site Control Table)
option on the Configuration Menu.

Implementing the corresponding logic in Natural ISPF is done by writing a subprogram and copying it to the Natural
ISPF Execution Library (SYSLIB). Each new object and command has a unique program, which is called by Natural
ISPF whenever the object is accessed or the command is issued. The naming convention for the Open NSPF
subprograms is as follows:

ISUxnn

where:

ISU Fixed prefix for Open NSPF.

x O If the program is for a user object.
C If the program is for a user command.

nn Two-letter code of the routine as defined in the Site Control Table.

Example:

The object EMPLOYEE will use the code EM, which means a subprogram named ISUOEM must handle all logic
for the object EMPLOYEE.

3Copyright Software AG 2002

User Objects and User CommandsOpen NSPF

Common Subjects of Open NSPF Routines
The following subjects are valid for all Open NSPF routines, that is, for routines implementing new objects or new
commands. This subsection contains reference information and can be skipped if you are reading this section for the
first time to gain an idea of Open NSPF.

Natural ISPF Error Handling

For the mechanism of the error handling, see the description of the following fields:

Field Name Length Type

INPUT-ERROR-CODE(N3) Input

If not equal to 0, Natural ISPF is in error-mode. Error mode usually means skipping further action and displaying the
error (acoustic alarm signal and message text in the appropriate part of the HEADER field) to the user in the next
input operation. Error mode is reset automatically after the subsequent input operation.

Field Name Length Type

OUTPUT-ERROR-CODE(N3) Output

If an error occurs in a user subprogram, this field must be set to a non-zero value. The current function is aborted and
the error is displayed on the next screen. Additional information about the error must be supplied in the fields
ERROR-NUMBER, ERROR-TEXT and ERROR-PARM. OUTPUT-ERROR-CODE should not be set in the
DISPLAY event.

Field Name Length Type

ERROR-NUMBER (N4) Output

If ERROR-TEXT is blank, this field contains the number of the error to be taken from the Error Message Library.
The Natural library if the number is in range 0001 = 6799, library SYSISPS1 if the number is in range 6800 - 9999.
Error numbers 9000 - 9999 are not used by Natural ISPF and can be used for site-specific messages.

Field Name Length Type

ERROR-TEXT (A75) Output

Contains a text that will be displayed in the next input operation (not necessarily in error mode).

Field Name Length Type

ERROR-PARM (A75) Output

Contains parameters for the error text separated by a semi-colon (;). Parameters in the error-text are noted as :1: . :2:.
Parameter substitution is done by Natural ISPF.

Command Variable

A command variable is passed to every user subprogram. This variable contains the current requested command, if it
has not been processed by Natural ISPF yet. If the subprogram changes this field, the commands in the field are
pushed to the Natural ISPF command stack.

Copyright Software AG 20024

Open NSPFCommon Subjects of Open NSPF Routines

Data Usage in an Open NSPF Routine

Several data areas are passed to an Open NSPF routine as parameters:

OPERATION-DATA Local data for Open NSPF routine. The data is kept between events and lives as long as the
current function is active. This can be used to save all data necessary to identify the current
object.

GLOBAL-DATA Shared by all Open NSPF routines, as well as by user exits, and can be used to
communicate between these programs. An example for using GLOBAL-DATA can be
found in the Example Library:

ISUCPR Implements PREFIX command and stores GLOBAL-DATA.

ISPJ---U Job user exit that evaluates GLOBAL-DATA.

STATIC-DATA Additional shared data. For details on usage, see below.

Natural ISPF Static Data usage

Open NSPF routines are subprograms which cannot use a Natural GLOBAL DATA area for data shared in several
programs. In case this type of data is needed, Natural ISPF offers a mechanism to create and retrieve ’static data’
which is accessible by all Open NSPF routines via the Natural ISPF data manager.

Natural ISPF can store and retrieve data items throughout the session. The items have a length of 253 bytes and are
identified by two letters. They are passed to every Open NSPF routine in two parameters:

STATIC-DATA (A253)
 STATIC-ID (A2)

By default, the data item identified by <blank> is passed first, and the data item which was last used is passed. You
can modify STATIC-DATA. If in a call to the Open NSPF routine the STATIC-ID is changed, Natural ISPF will call
again with the same event and will pass the static data item that was requested. This is possible for user objects and
user commands.

A coding example in an Open NSPF subroutine:

5Copyright Software AG 2002

Data Usage in an Open NSPF RoutineOpen NSPF

DEFINE DATA PARAMETER
 USING ISP-UO-A
 PARAMETER
 1 #STATIC-DATA(A253)
 1 REDEFINE #STATIC-DATA /* user redefinition of STATIC-DATA
 2 #MY-FIELD1 (A10)
 2 #MY-FIELD2 (N05)
 2 #MY-FIELD3 (A32)
 1 #GLOBAL-DATA(A32)
 1 #OPERATION-DATA(A128)
 1 REDEFINE #OPERATION-DATA

 END-DEFINE
 *
 IF #STATIC-ID NE ’PP’ /* get static data with id=PP
 MOVE ’PP’ TO #STATIC-ID
 ESCAPE ROUTINE /* return to get data
 END-IF
 IF #STATIC-DATA EQ ’ ’ /* empty just created
 RESET #MY-FIELD1
 #MY-FIELD2
 #MY-FIELD3 /* set initial values
 END-IF
 /* now it can be used

Defining a User Object
Open NSPF routines to implement new user objects are of type Natural subprogram with a predefined parameter area
to communicate with Natural ISPF:

DEFINE DATA
 PARAMETER USING ISP-UO-A /* Standard Open NSPF interface
 PARAMETER
 1 #STATIC-DATA (A253)
 1 #GLOBAL-DATA (A32) /* Shared data for Open NSPF routine
 1 #OPERATION-DATA (A128) /* Local data for Open NSPF routine
 LOCAL
 END-DEFINE

The parameter area ISP-UO-A can be found in the User Exit Library. The Open NSPF routine is called from Natural
ISPF every time object-specific logic is to be executed, that is, when the object is accessed by a related function.

The object-specific logic identified by the EVENT field in the parameter area is referred to as an event (see the
subsection Event Logic).

To add a new object to Natural ISPF, proceed as follows:

1. Allocate a two-letter code to the object (to determine the subprogram name). Object codes should start with an
alpha character, special characters and numbers are reserved for Software AG.

2. Prepare a Natural subprogram to handle the object and copy it to SYSLIB.
3. Add the object to the Site Control Table.
4. Relate the object to functions. It is recommended that you use existing Natural ISPF functions, but you can also

define new functions.

Copyright Software AG 20026

Open NSPFDefining a User Object

Once the object is defined to Natural ISPF, the object program can be invoked using the Natural ISPF command

FF OO <parameters>

where:

FF is the function ID.

OO is the object ID (object abbreviation).

This results in a call to a program with the name ISUOnn, where nn stands for the two-character code identifying the
object.

Note:
One of the related functions could also be the function ENTRY, which presents an Entry Panel, a screen which
allows field-oriented input of all parameters relevant for the object (typically the components of
OPERATION-DATA). The command ENTRY OO can then be inserted in one of your site-specific menu
definitions, thus making it available within your site-specific menu structure (see the explanation for ENTRY in
the Section Menu Maintenance of the Natural ISPF Administration Documentation).

Site Control Table: Adding a User Object

The Site Control Table can be found in the User Profile Library and is usually called CONTROLU. In this table, you
can define new objects, and you can relate objects to functions.

Edit macro MAC-CNFZ is available when editing the Site Control Table. If you wish to use this edit macro, you
must use the Natural utility SYSMAIN to copy the following programs from the Example Library (SYSISPE) to the
User Profile Library (SYSISPFU):

MAC-CNF*
 MACCNF*

Note:
As an alternative, it would also be sufficient to define the library SYSISPE as a STEPLIB for the library
SYSISPFU.

To create a new CONTROLU member, you can use the edit macro with the function command:

EDIT CNF CONTROLU MODEL=MAC-CNFZ

To modify an existing CONTROLU member, use the command:

REGENERATE

in the edit session with the existing member.

The following is an example of a Site Control Table:

7Copyright Software AG 2002

Site Control Table: Adding a User ObjectOpen NSPF

* OBJECTS
 *
 *CODE
 * !SUB-system
 * ! !Object sec
 * ! ! !1 letter abbv
 * ! ! ! !3 letter abbv
 * ! ! ! ! !name !description !type
 * ! ! ! ! ! ! !
 >UU!I! ! !PRU!PRUSERS !PROCESS users !U
 >E7! ! ! !EMP!EMPLOYEES!Employees !U
 >-9! ! ! !TXT!Text !Text Members !U

Note:
The column delimiting character (!) used in the above example is keyboard-language dependent and
corresponds to hex code 4F.

CODE Two-character code to be used for the subprogram name. It is strongly recommended that you
use a letter as first character. For example: E7. This means that the subprogram name must be
ISUOE7.

SUB-SystemOne-character code of the subsystem to which the object applies. The subsystem codes are the
same as used in the Configuration Table, for example, M for OS/390 (MVS). If the subsystem
is not installed, the object is not available. If no subsystem is specified, the object is always
available. For a list of available subsystems, see Subsystems Supported by Natural ISPF of the
Natural ISPF Administration Documentation.

Object sec Authorization class (see Authorization Classes in this documentation). If you want to restrict
access to this object/function it is recommended that you use the ’=’ (USER DEFINED)
authorization class and assign different authorization levels to user/user groups.

1Letter abbv An object can be abbreviated with 1 letter (as N for Natural), but you should not use this 1-byte
abbreviation because most of them are already used by Software AG.

3Letter abbv A 2- or 3-character ID to abbreviate the object in function commands, for example, EMP for
EMPLOYEES.

Name Full name of the object, for example, EMPLOYEES.

Description Further description of the object used in active help screens.

Type Identification of a user-defined object. This column must contain the letter U for every
definition of a user-defined object.

Site Control Table: Adding a User Function

You can define new functions in the Site Control Table CONTROLU in lines starting with the minus sign (-), for
example:

Copyright Software AG 20028

Open NSPFSite Control Table: Adding a User Function

* FUNCTIONS
 *Code
 * !1 Letter abv
 * ! !2 Letter abv
 * ! ! !Name
 * ! ! !Action
 * ! ! !Security
 * ! ! !!Parameters?
 * ! ! !!!Prompt-type
 * ! ! !!!!Editor?
 * ! ! !!!! !
 -IS! !IS!INSPECT !*Insp’td!1 !
 -RM! !RM!REMARK !*Remarkd!2 X!

Note:
The column delimiting character "!" used in the above example is keyboard-language dependent and
corresponds to hex code 4F.

Parameter Meaning

CODE Two-character identifier of function (passed to the subprogram), for example, RM for the function
REMARK.

1Letter
abbv

A function can be abbreviated with 1 letter (as E for Edit), but you should not use this 1-byte
abbreviation because most of them are already used by Software AG.

2Letter
abbv

Two-letter abbreviation of the function (to be used as line command).

Name Full name of the function.

Action Associated attribute text, to be used as reply to line commands in list sessions (max. 8 characters,
first character should be an asterisk *).

Security Security level assigned, to be compared with the user’s authorization level (a digit in the range 1-9).
The function can be activated only if the user has an authorization level greater or equal to the
security level assigned to the function.

Parameters Leave blank - for future use.

Prompt-type Leave blank - for future use.

Editor Specify X to indicate that function invokes an Editor session (session-type E/B/L/R). Leave blank to
indicate that the function results in a message or in a screen handled by the object’s user subprogram.

Site Control Table: Relating User Objects to Functions

You can relate the new object to Natural ISPF functions in the Site Control Table as follows:

* FUNCTIONS FOR OBJECTS
 *
 *
 *CODE
 * !FUNCTION-OPTION OPTIONS = D - Default function X - regular
 * ! ! ! ! ! ! ! ! !
 $E7!LS-D!---X!IN-X!DL-X! ! ! ! !
 $-9!LS-D!BR-X!ED-X!DL-X!---X! ! ! !
 $UU!LS-D!---X!DL-X! ! ! ! ! !

9Copyright Software AG 2002

Site Control Table: Relating User Objects to FunctionsOpen NSPF

Note:
The column delimiting character "!" used in the above example is keyboard-language dependent and
corresponds to hex code 4F.

Parameter Meaning

CODE Two-character code of the object.

FUNCTION-
OPTIONS

In each of these columns, you can define a function that can be applied to the object. A maximum of
10 functions can be activated per object. Each function definition consists of 4 bytes: AABC, where:

AA Function code, for all available function codes see the Section User Exits
in the Natural ISPF Administration Documentation.
Two hyphens (--) as function code means ENTRY function,
that is displaying an Entry Panel related to this object.

 B Not used

C Function type: X is a regular function, D the default function.
For example, for object E7 (EMPLOYEES):
 LS-D means LIST is the default,
 ---X means Entry Panel for the object,
 IN-X means INFORMATION as a non-default function,
 DL-X means DELETE as a non-default function.

Example

In the list of active jobs, you want to abbreviate the line command MODIFY with MO, which prompts for an
operator command to be sent to the selected active job. Standard Natural ISPF does not support this functionality, but
with Open NSPF it could be implemented as follows:

The following definitions must be specified in the Site Control Table:

*
 * Define a new function MODIFY
 *
 -MO! !MO!MODIFY !*Modifd !1 !
 *
 * Define a new object TASK
 *
 >-A! ! ! !TAS!TASK !Tasks !U
 *
 * Relate the new function to active jobs (code A)
 * and to new object TASK
 *
 $A !MO-X! ! ! ! ! ! ! !
 $-A!MO-D! ! ! ! ! ! ! !

Now you must implement ISUO-A which contains the logic for the MODIFY command (a coding example can be
found in the Example Library). When an MO line command is entered in the list of active jobs you must supply logic
to invoke ISUO-A. This can be done with an object transfer in the active jobs user exit ISPA---U (a coding example
can be found in the Example Library).

Event Logic

Events are passed to the user-subprogram in the EVENT field of the parameter area. The subprogram must be able to
react to the event by executing some object-specific logic for all functions defined for this object. Of course, the
subprogram can use other routines to handle an event.

Copyright Software AG 200210

Open NSPFEvent Logic

Unknown events must be ignored by the subprogram to allow for the addition of events in later versions of Natural
ISPF.

Session Types

Natural ISPF can handle different types of sessions for Natural ISPF objects, as well as for user objects:

Type Description

’ ’ The session is handled by the user subprogram. Usually, performing a function means entering data and
reacting to user commands, but this is not always the case. For example, a function such as DELETE can
operate without additional terminal I/O and then terminate. The user subprogram must:
Perform the function, this includes handling the terminal I/O (event=PERFORM).
Redisplay the last screen, if terminal I/O has been performed (event=DISPLAY).

E The session is an Editor session, all terminal I/O is handled by Natural ISPF. All editing commands are
allowed in this session.
The user subprogram must:
Retrieve the data to be edited and store it in an incore file (event=START).
Retrieve the data from the incore file and store it in an appropriate place, when a command such as SAVE
has been entered (event=COMMAND).

B A Browse session is very similar to an edit session, the only difference is that update commands are not
allowed. In this case, the subprogram does not have to be prepared to save the data.

L The session is an Editor session, which contains a list of items, such as a list of members in a library. All
terminal I/O is handled by Natural ISPF. The list can be manipulated with Editor commands, updates are not
allowed. Additionally, all function commands defined for the object can be used as line commands. The user
subprogram must:
Retrieve the data to be listed and store it in an incore file (event=START).
React to line commands entered in the list (event=LINE).

R The session is like a list, but the list is refreshed whenever ENTER is pressed (can be used for displaying
data which changes very frequently like the list of active jobs in Natural ISPF). Line command handling is
identical to a list session. The user subprogram must:
Check parameters and create an incore file (event=START).
Delete the old contents of the incore file and read the actual data to be listed and store it in an incore file
(event=REFRESH).
React to line commands entered in the list (event=LINE).

Session Types and Events

This table gives an overview which events receive control depending on the session type, and the numbers indicate
the normal sequence of events.

11Copyright Software AG 2002

Session TypesOpen NSPF

 L
I
N
E

P
A
R
M

P
A
R
M
-
E
N
D

S
T
A
R
T

T
I
T
L
E

R
E
F
R
E
S
H

C
O
M
M
A
N
D

E
N
D

P
E
R
F
O
R
M

D
I
S
P
L
A
Y

L
I
S
T
I
T
E
M

LIST 1 1 2 3 x

LIST
REFRESHABLE

1 1 2 3 4 x

EDIT 1 1 2 3

BROWSE 1 1 2 3

SELF-HANDLED 1 1 2 3 4

Event Description

This subsection provides a detailed description of all events:

LINE

This event is called as first event when the function is invoked with a line command. In the LINE event, the
parameters for the current function must be extracted as in the PARM event for direct commands. Therefore, the
parameters supplied in LINE-DATA must be separated and written to OPERATION-DATA as in the PARM event.
Remember that when designing a list, all identifiers necessary for line command processing should be in the first 100
byte of a line, because this part of a line is passed in the field LINE-DATA. Care must be taken if left/right shifting
commands are possible for the Editor session, because the data visible to the user are always delivered by the
LINE-DATA field.

PARM

Natural ISPF function commands can be issued with positional and/or keyword parameters. Keyword parameters are
recognized as a pair of tokens, separated by the equal sign (=). This event implements parameter passing, and is
processed only if parameters are passed. Each parameter is passed in a separate event in the PARM-KEYWORD and
PARM-VALUE fields, so successive calls of this event depend on the number of parameters typed in by the user.

PARM-KEYWORD contains a keyword if the parameter has been typed in as a keyword parameter, or the
position if the parameter was entered as a positional parameter.
PARM-VALUE contains the parameter value. Valid parameters should be stored in OPERATION-DATA for
further processing of the function.

Example:

Assume the user issued the command:

EDIT MYPROG T NODE=148 VOLSER=DISK01

Copyright Software AG 200212

Open NSPFEvent Description

This command results in the following PARM events:

Number PARM-KEYWORD PARM-VALUE

1 1 MYPROG

2 2 T

3 NODE 148

4 VOLSER DISK01

PARM-END

For future use.

START

This event is called after all parameters have been passed with the PARM or LINE event. This event is also executed
if no parameters are passed.

Normally, the parameters collected in OPERATION-DATA are checked if they are all available and correct to
execute the function. The function can be aborted by setting the field OUTPUT-ERROR-CODE and return to the
caller.

In this event, the Session Type (E/B/L/R) must be set. The next screen is displayed either in PERFORM event in the
Open NSPF routine or by the Natural ISPF control logic if the Editor is used, depending on the SESSION-TYPE.
For the Session Type Edit/Browse/List/Refreshable list (abbreviated respectively as E/B/L/R), an incore file must be
created. Except for type R, the file must be filled with data. For type R, the file is filled with data in the REFRESH
event.

TITLE

This event is called once after the START event to get the session title. The given title is then available in the TITLE
field in successive PERFORM events, or is displayed in the top left corner of the Browser screen.

REFRESH

This event is called for Session Type R before the screen is displayed (the screen is displayed outside the Open
NSPF routine). In this event, the contents of the incore file should be refreshed, which usually means delete and fill
again with refreshed data.

COMMAND

13Copyright Software AG 2002

Event DescriptionOpen NSPF

When the session is handled by Natural ISPF (Session Type E/B/L/R), a command is routed to the Open NSPF
routine when it is not a valid Editor command. When the screen is self-handled (Session Type ’ ’), all commands are
first routed to this event. The command must be filtered if it is a valid local command for the current function.
Commands which are not handled locally must be returned to Natural ISPF. If line commands and main commands
are entered simultaneously, the event LINE for the new function is executed before the COMMAND event.

END

This event is called as the last event before session terminates. If an incore file has been created (Session Type
E/B/L/R), it must be deleted.

PERFORM

This event is called when the screen is handled by the Open NSPF routine itself (Session-Type ’ ’). Normally an
INPUT WITH TEXT #TITLE is coded here.

DISPLAY

This event is called when the screen handled by the Open NSPF routine (Session-Type ’ ’) must be refreshed, for
example when an UNZOOM command is entered, that is, the current screen should be displayed (INPUT statement)
and control should be given to Natural ISPF (ESCAPE statement), which will handle non-conversational mode.

LISTITEM

This event is called when the user enters the new command ALL in a LIST session. In the LISTITEM event, the
parameters for the current function must be extracted similarly to the LINE event for line commands. Therefore, the
identifier of a single object in the list supplied in the field LINE-DATA must be extracted and written to the field
ITEM-NAME. Remember that when designing a list, all identifiers necessary for line command processing should
be in the first 100 bytes of a line, because this part of a line is passed in the field LINE-DATA. Care must be taken if
left/right shifting commands are possible for the incore file, because the data visible to the user are always delivered
by the LINE-DATA field.

Parameter Description

This subsection provides a detailed description of all parameters passed to and from the Open NSPF routine:

Parameter Name Length Type

COMMAND (A50) Input/Output

The first token entered in the command line. If a PF key is pressed, the value assigned to the PF key is delivered as
command. If a command is entered and a PF key is pressed simultaneously, the contents of the PF key is
concatenated before the command. The value returned in the command field will be processed by Natural ISPF. This
takes effect in the START, PERFORM, COMMAND and END events and results in invocation of the corresponding
function.

Copyright Software AG 200214

Open NSPFParameter Description

Parameter Name Length Type

CHANGED (L) Input/Output

This flag is set in an Editor session (session type E) if data are modified. It indicates whether the session was
changed by the user and therefore an update must be done. This is relevant to the COMMAND event when a SAVE
command is executed and in the END event where the session is closed.

The flag can also be reset by the subprogram (for example, after a successful SAVE).

Parameter Name Length Type

ERROR-NUMBER (N4) Input/Output

As input parameter, a non-zero ERROR-NUMBER indicates that a message has to be displayed to the user. The text
of the message has already been prepared in the TITLE field.

As output parameter, a non-zero ERROR-NUMBER indicates that the text stored in SYSERR for this number has to
be displayed to the user in the next Natural ISPF screen (this could be in an Open NSPF subprogram or in Natural
ISPF itself).

See also the field OUTPUT-ERROR-CODE. If OUTPUT-ERROR-CODE is not set (value is zero), information can
be passed to the user since the current function is not aborted. The error text is taken according to number ranges
from the following libraries:

6800 - 8999: SYSISPS1
 9000 - 9999: are reserved for the user in SYSISPS1

Parameter Name Length Type

ERROR-TEXT (A75) Output

Overrides ERROR-NUMBER.

Parameter Name Length Type

ERROR-PARM (A75) Output

The ERROR-PARM tokens delimited by a semicolon (;). Parameters to be substituted in the error texts are denoted
as :1: :2:

Parameter Name Length Type

FUNCTION (A2) Input

The function code as defined in the member CONTROLx.

Parameter Name Length Type

GLOBAL-DATA (A32) Input/Output

Data Area common to all Open NSPF routines.

15Copyright Software AG 2002

Parameter DescriptionOpen NSPF

Parameter Name Length Type

HEADER (A79) Output

If the Editor is used (Session Type E/B/L/R) the column headers are delivered to the caller in this field. If omitted,
no column headers are presented in the Editor session.

Parameter Name Length Type

IDENTIFIER (A8) Input

Unique identifier created for this session. Can be used as file identifier to the Incore Database. This identifier is
available in the START event and all subsequent events.

Parameter Name Length Type

INPUT-ERROR-CODE(N3) Input

Denotes that there is an error situation, that is, the field OUTPUT-ERROR-CODE was set in a previous function or
in Natural ISPF itself. In terms of Natural ISPF, this means that the screen must be presented with the ALARM
feature.

Parameter Name Length Type

LINE-DATA (A100) Input

Contains the Editor line as displayed currently in the screen area. Care must be taken if shift left/right is used. In this
case, the visible data on the screen is always delivered in LINE-DATA.

Parameter Name Length Type

EVENT (A8) Input

Defines the event that is to be handled by the Open NSPF routine. For description and possible values, see the
subsection Event Description.

Parameter Name Length Type

OUTPUT-ERROR-CODE(N3) Output

A non-zero value denotes an error situation to Natural ISPF, that is, the current function is aborted and the error
denoted by the fields ERROR-NUMBER, ERROR-TEXT and ERROR-PARM is reported in the previous screen.
This should be used in real error situations. If the screen is handled by an Open NSPF routine, the message is
brought in the field TITLE and is available in the PERFORM and DISPLAY events. OUTPUT-ERROR-CODE
should not be set in the DISPLAY event.

Parameter Name Length Type

PARM-KEYWORD (A50) Input

Contains a keyword, if the notation KEYWORD=PARM-VALUE was used, or a one-digit number, if the parameter
is positional.

Parameter Name Length Type

PARM-VALUE (A50) Input

Copyright Software AG 200216

Open NSPFParameter Description

Contains the parameter value.

Parameter Name Length Type

PF-KEY (A4) Output

In the PERFORM event, the PF key pressed must be returned to Natural ISPF so that it can be handled by Natural
ISPF. That is, *PF-KEY must be moved to PF-KEY.

Parameter Name Length Type

OPERATION-DATA (A128) Input/Output

Local data for Open NSPF routine. The data is kept between events and lives as long as the current operation is
active.

Parameter Name Length Type

SESSION-TYPE (A2) Output

Possible values:

’ ’ The screen is handled by the Open NSPF routine itself in the PERFORM event.

’E’ Editor EDIT mode

’B’ Editor BROWSE mode. No line commands are valid in this type of session.

’L’ Editor LIST mode. All function commands can be entered as line commands in this type of session.

’R’ Editor refreshable LIST mode. All function commands can be entered as line commands in this type of
session.

Parameter Name Length Type

STATIC-DATA (A253) Input/Output

Shared data segment identified by STATIC-ID. The data is always updated when it is changed upon return to Natural
ISPF. The data segment lives as long as the Natural ISPF session lives. If the STATIC-DATA and STATIC-ID are
changed in one operation, the data is updated for the old ID and the new Segment for the new ID is returned.

Parameter Name Length Type

STATIC-ID (A2) Input/Output

Identification for a shared data segment. If this ID is changed, the current event is triggered again and the appropriate
data segment is returned. The last STATIC-ID accessed is always returned as a default for new functions.

Parameter Name Length Type

TITLE (A79) Input/Output

The session title which is displayed in the first line of the screen. It is assigned in the event TITLE and used in the
events PERFORM and DISPLAY when the screen is handled by the Open NSPF routine itself (Session Type ’ ’). An
error message or error text is brought in the right part of the TITLE when it is requested. This means the fields

17Copyright Software AG 2002

Parameter DescriptionOpen NSPF

ERROR-NUMBER and ERROR-TEXT and ERROR-PARM are converted and assigned to the TITLE.

Parameter Name Length Type

ITEM-NAME (A70) Output

Contains valid parameters which must be extracted from the LINE-DATA field in the LISTITEM event.
ITEM-NAME can contain any combination of positional and keyword parameters according to the parameter syntax
for the current object. The contents of ITEM-NAME are used by Natural ISPF to generate a function command with
parameters as returned in ITEM-NAME. Thus a later PARM event must also be able to interpret these parameters. A
coding example can be found in the member ISUO-7 in the Example Library.

The following table gives an overview which parameters take effect depending on the event:

 Event
Parameter

P
A
R
M

P
A
R
M
-
E
N
D

S
T
A
R
T

T
I
T
L
E

R
E
F
R
E
S
H

L
I
N
E

C
O
M
M
A
N
D

E
N
D

P
E
R
F
O
R
M

D
I
S
P
L
A
Y

L
I
S
T
I
T
E
M

COMMAND O IO O

CHANGED I I

ERROR-NUMBER O O O O O O O

ERROR-TEXT O O O O O O O

ERROR-PARM O O O O O O O

FUNCTION I I I I I I I I I I I

GLOBAL-DATA IO IO IO IO IO IO IO IO IO IO IO

HEADER O

INPUT-ERROR-CODE I I

IDENTIFIER I I I I I I

LINE-DATA I I

EVENT I I I I I I I I I I I

OUTPUT-ERROR-CODEO O O O O O O

PARM-KEYWORD I

PARM-VALUE I

PF-KEY O

OPERATION-DATA IO IO IO IO IO IO IO IO IO IO

SESSION-TYPE O

STATIC-DATA IO IO IO IO IO IO IO IO IO IO

STATIC-ID IO IO IO IO IO IO IO IO IO IO

TITLE O I I

ITEM-NAME O

Copyright Software AG 200218

Open NSPFParameter Description

Note:
The PARM-END event is for future use. As new functionality is implemented in future, more events may be
created. In order to be upwards compatible with future versions of Natural ISPF, it is therefore good coding
practice if your subprograms ignore unknown or unused events.

Example

The following example can be found in the Example Library:

 * OBJECT : ISUO-7 DATE CREATED: 16.02.93 BY: JWO
 * ---
 * PURPOSE:
 * Example program which uses Incore Database(IDB)
 * and OPEN NSPF. The functions list of employees
 * and info employees are implemented and have an
 * NSPF like user-interface

 *
 DEFINE DATA PARAMETER
 USING ISP-UO-A
 PARAMETER
 1 #STATIC-DATA(A253)
 1 #GLOBAL-DATA(A32)
 1 #OPERATION-DATA(A200)
 1 REDEFINE #OPERATION-DATA /* our memory
 2 #PERSONNEL-ID (A8)
 2 #NAME (A20)
 2 #FIRST-NAME (A20)
 1 #LINE-DATA(A100) /* list line passed when
 1 REDEFINE #LINE-DATA /* line commands are entered
 2 #LINE-PERSONNEL-ID (A8)
 2 #F1 (A01)
 2 #LINE-FIRST-NAME (A20)
 2 #F2 (A01)
 2 #LINE-NAME (A20)
 *
 LOCAL USING IDBI---L /* for Incore database
 LOCAL
 1 EMPLOYEES VIEW OF EMPLOYEES
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 SEX
 2 BIRTH
 2 DEPT
 2 JOB-TITLE
 1 EMPL-LIST VIEW OF ISP-IDB-EMPL-LIST /* Incore file to be listed
 2 PERSONNEL-ID
 2 FIRST-NAME
 2 NAME
 2 BIRTH
 2 JOB-TITLE
 1 #HEADER2
 2 PERSONNEL-ID (A8) INIT <’Number’>
 2 #F1 (A1)
 2 FIRST-NAME (A20) INIT <’First-Name’>
 2 #F2 (A1)
 2 NAME (A20) INIT <’Name’>
 2 #F3 (A1)
 2 BIRTH (A6) INIT <’Birth’>

19Copyright Software AG 2002

ExampleOpen NSPF

 2 #F4 (A1)
 2 JOB-TITLE (A20) INIT <’Title’>
 1 REDEFINE #HEADER2
 2 #HEADER1 (A77)
 1 #NO-RECORDS(L) INIT <TRUE>
 1 #END-NAME (A8)
 END-DEFINE
 *
 * Mainline
 * Functions for EMPLOYEES are LIST, INFO and ENTRY PANEL
 *
 DECIDE ON FIRST VALUE OF #FUNCTION
 VALUE ’LS’
 PERFORM EMPL-LIST
 VALUE ’IN’
 PERFORM EMPL-INFO
 VALUE ’--’
 PERFORM EMPL-ENTRY-PANEL
 NONE IGNORE
 END-DECIDE
 *
 *
 * Function Subroutines
 *
 *
 DEFINE SUBROUTINE EMPL-LIST
 *
 DECIDE ON FIRST VALUE OF #EVENT
 VALUE ’LISTITEM’ /* For ALL command
 PERFORM ITEM-OPTION
 *
 VALUE ’PARM’ /* Get parameters
 PERFORM PARM-OPTION
 *
 VALUE ’START’
 IF #NAME = ’ ’ /* parameter missing
 MOVE 1 TO #OUTPUT-ERROR-CODE /* error
 MOVE 6802 TO #ERROR-NUMBER
 ESCAPE ROUTINE
 END-IF
 *
 * Fill Incore File (Edit session) with data
 *
 EXAMINE #NAME FOR ’*’ REPLACE ’ ’
 COMPRESS #NAME H’FF’ INTO #END-NAME LEAVING NO
 *
 READ (100) EMPLOYEES BY NAME STARTING FROM #NAME
 IF EMPLOYEES.NAME GT #END-NAME
 ESCAPE BOTTOM
 END-IF
 MOVE FALSE TO #NO-RECORDS
 MOVE BY NAME EMPLOYEES TO EMPL-LIST
 STORE EMPL-LIST IDENTIFIER = #IDENTIFIER
 END-READ
 *
 IF #NO-RECORDS
 MOVE 1 TO #OUTPUT-ERROR-CODE
 MOVE ’No employee found’ TO #ERROR-TEXT
 END-IF
 ASSIGN #SESSION-TYPE = ’L’ /* it is a LIST session
 ASSIGN #HEADER = #HEADER1 /* with field headers
 END TRANSACTION

Copyright Software AG 200220

Open NSPFExample

 *
 VALUE ’TITLE’ /* Create a Title
 COMPRESS #TITLE #NAME INTO #TITLE
 *
 VALUE ’END’ /* Delete Incore file
 MOVE #IDENTIFIER TO FILE-IDENTIFIER
 MOVE ’DELETE’ TO ACTION
 CALLNAT INCORE USING INCORE-CTL INCORE-DATA
 *
 *
 VALUE ’COMMAND’ IGNORE /* Local command handling
 VALUE ’PARM-END’ IGNORE /* End of parameter parsing
 NONE IGNORE /* other events ignored
 END-DECIDE
 *
 END-SUBROUTINE
 *
 DEFINE SUBROUTINE EMPL-INFO
 DECIDE ON FIRST VALUE OF #EVENT
 *
 VALUE ’LINE’ /* Get parameters from list-line
 PERFORM LINE-OPTION
 *
 VALUE ’PARM’ /* Get parameters
 PERFORM PARM-OPTION
 *
 VALUE ’START’
 IF #PERSONNEL-ID = ’ ’ /* Missing parameters
 MOVE 1 TO #OUTPUT-ERROR-CODE
 MOVE 6802 TO #ERROR-NUMBER
 ESCAPE ROUTINE
 END-IF
 ASSIGN #SESSION-TYPE = ’ ’ /* session is handled in here
 *
 VALUE ’TITLE’ /* Create a Title
 IF #NAME NE ’ ’
 COMPRESS #TITLE #NAME INTO #TITLE
 ELSE
 COMPRESS #TITLE #PERSONNEL-ID INTO #TITLE
 END-IF
 *
 VALUE ’PERFORM’ ,’DISPLAY’ /* handle session
 MOVE TRUE TO #NO-RECORDS
 FIND EMPLOYEES WITH PERSONNEL-ID = #PERSONNEL-ID
 INPUT WITH TEXT #TITLE USING MAP ’ISUO-7IM’
 IF #EVENT = ’DISPLAY’
 ESCAPE ROUTINE
 END-IF
 MOVE *PF-KEY TO #PF-KEY /* return pressed key for
 /* interpretation
 MOVE FALSE TO #NO-RECORDS
 END-FIND
 IF #NO-RECORDS
 MOVE 1 TO #OUTPUT-ERROR-CODE
 MOVE ’No employee found’ TO #ERROR-TEXT
 MOVE ’END’ TO #COMMAND
 END-IF
 VALUE ’COMMAND’ IGNORE /* Local command handling
 VALUE ’PARM-END’ IGNORE /* End of parameter parsing
 NONE IGNORE
 END-DECIDE
 END-SUBROUTINE

21Copyright Software AG 2002

ExampleOpen NSPF

 *
 DEFINE SUBROUTINE EMPL-ENTRY-PANEL
 *
 DECIDE ON FIRST VALUE OF #EVENT
 *
 VALUE ’LINE’ /* Get parameters from line
 PERFORM LINE-OPTION
 *
 VALUE ’PARM’ /* Get parameters
 PERFORM PARM-OPTION
 *
 VALUE ’TITLE’ /* Create a Title
 MOVE ’EMPLOYEES - ENTRY PANEL’ TO #TITLE
 *
 VALUE ’PERFORM’ ,’DISPLAY’ /* Non Editor functions
 INPUT (AD=MI) WITH TEXT #TITLE
 ’COMMAND ===>’(I) #COMMAND
 /
 /
 / ’ Name ’(I) ’===>’(D) #NAME
 / ’ Personnel-No ’(I) ’===>’(D) #PERSONNEL-ID
 IF #EVENT = ’DISPLAY’ ESCAPE ROUTINE END-IF
 IF #COMMAND = ’ ’ AND *PF-KEY = ’ENTR’
 IF #PERSONNEL-ID EQ ’ ’
 MOVE ’LIST’ TO #COMMAND
 ELSE
 MOVE ’INFO’ TO #COMMAND
 END-IF
 END-IF
 MOVE *PF-KEY TO #PF-KEY
 *
 VALUE ’COMMAND’ IGNORE /* Local command handling
 VALUE ’PARM-END’ IGNORE /* End of parameter parsing
 VALUE ’START’ IGNORE
 VALUE ’END’ IGNORE
 NONE IGNORE
 END-DECIDE
 END-SUBROUTINE
 *
 * General Subroutines
 *
 DEFINE SUBROUTINE PARM-OPTION
 *
 * Employee name is an accepted parameter
 * either with keyword NAME or as first parameter.
 * Employee number is accepted with keyword NUMBER.
 *
 DECIDE ON FIRST VALUE OF #PARM-KEYWORD
 VALUE ’1’,’NAME’ MOVE #PARM-VALUE TO #NAME
 VALUE ’NUMBER’
 IF #PARM-VALUE IS (N8)
 MOVE RIGHT #PARM-VALUE TO #PERSONNEL-ID
 ELSE
 MOVE 1 TO #OUTPUT-ERROR-CODE /* error
 MOVE 6801 TO #ERROR-NUMBER /* invalid parameter
 ESCAPE ROUTINE
 END-IF
 NONE IGNORE
 END-DECIDE
 END-SUBROUTINE
 *
 DEFINE SUBROUTINE LINE-OPTION

Copyright Software AG 200222

Open NSPFExample

 *
 * Move the relevant data from the list line into our
 * program data
 *
 MOVE #LINE-PERSONNEL-ID TO #PERSONNEL-ID
 MOVE #LINE-NAME TO #NAME
 END-SUBROUTINE
 *
 *
 DEFINE SUBROUTINE ITEM-OPTION
 *
 * Move the relevant data from the list line into ITEM-NAME
 *
 COMPRESS ’NUMBER = ’ #LINE-PERSONNEL-ID INTO #ITEM-NAME
 END-SUBROUTINE
 *
 END

Defining a User Command
Every command defined for Open NSPF is implemented by an Open NSPF routine. The Open NSPF routines are of
type Natural subprogram with a fixed parameter area to communicate with Natural ISPF:

DEFINE DATA
 PARAMETER USING ISP-UC-A /* Standard Open NSPF interface
 PARAMETER
 1 #STATIC-DATA (A253)
 1 #GLOBAL-DATA (A32) /* Shared data for Open NSPF routine
 LOCAL
 END-DEFINE

The parameter area ISP-UC-A can be found in the User Exit Library (SYSISPX). The Open NSPF routine is called
from Natural ISPF every time the command is issued.

Site Control Table: Adding a User Command

The Site Control Table can be found in the User Profile Library and is usually called CONTROLU. In this table, you
can define new commands.

Edit macro MAC-CNFZ is available when editing the Site Control Table. If you wish to use this edit macro, you
must use the Natural utility SYSMAIN to copy the following programs from the Example Library (SYSISPE) to the
User Profile Library (SYSISPFU):

MAC-CNF*
 MACCNF*

Note:
As an alternative, it would also be sufficient to define the library SYSISPE as a STEPLIB for the library
SYSISPFU.

If you wish to create a new CONTROLU member, you can use the edit macro using the function command

EDIT CNF CONTROLU MODEL=MAC-CNFZ

If you wish to modify an existing CONTROLU member, use the following command in the edit session with
the existing member:

23Copyright Software AG 2002

Defining a User CommandOpen NSPF

REGENERATE

To add a new command to Natural ISPF, proceed as follows:

1. Allocate a two-letter code to the command.
2. Prepare a Natural subprogram to handle the command and copy it into SYSLIB.
3. Add the user command to the Site Control Table.

Once the command has been entered in the Site Control Table and the corresponding subprogram has been copied to
SYSLIB, the subprogram is executed every time a user issues the command.

The command attributes are entered into one line in the Site Control Table in fixed positions with the exclamation
mark ! in the beginning of the line. Example:

*COMMAND !
 * !SECURITY OPTION/LEVEL
 * ! !COMMAND-TYPE
 * ! ! !MIN ABBV
 * ! ! ! !PROGRAM
 * ! ! ! ! !PROGRAM-PARM
 * ! ! ! ! ! !SUBSYSTEM
 !MAIL ! !U!4!ML ! !

Note:
The column delimiting character ! used in the above example is keyboard-language dependent and corresponds
to hex code 4F.

Parameter Meaning

Command Full command name, for example: MAIL.

Security
Option/Level

One character security option with one digit for level. The command will be active only if the
user has been assigned an authorization level greater or equal to the command level (e.g. Q2). If
left blank, the command is always active.
The one-character security option is the Authorization class (see Authorization Classes in the
Natural ISPF Administration Documentation). To restrict access to this object/function you
should use the ’=’ (USER DEFINED) authorization class and assign different authorization
levels to user/user groups.
The one-digit level corresponds to the authorization level defined for the specified class in the
user authorization table (see the Section User Definitions in the Natural ISPF Administration
Documentation).

Command-Type Identification of a user-defined command. This column must contain the letter U for every
definition of a user-defined command.

Min abbv Minimum characters in command line to identify the command. For example, 2 would allow
users to enter MA. 4 allows no command abbreviation for MAIL.

Program Two-character code to be used for the subprogram name. It is strongly recommended that you
use a letter for the first digit. For example, a code of ML means the subprogram must be called
ISUCML.

Program-Parm For future use.

Subsystem One-character subsystem code. The codes are the same as in the Configuration Table. The
command will be active if the the subsystem is installed. For example, M means the user
command is available to OS/390 users. If left blank, the command is always active. For a list of
available subsystems, see Subsystems Supported by Natural ISPF of the Natural ISPF
Administration Documentation.

Copyright Software AG 200224

Open NSPFSite Control Table: Adding a User Command

Parameter Description

Parameter Name Length Type

COMMAND (A128) Input/Output

This field contains the command in full length which the user typed in to invoke the Open NSPF routine, including
those parameters that precede the first parameter delimiter.

Parameter Name Length Type

COMMAND-PARM (A64) Input/Output

Command parameters which were entered by the user after the first parameter delimiter.

For example, assuming the parameter delimiter is a comma (,), and the user-defined command is UCOM, the
COMMAND and COMMAND-PARM fields have the following contents:

Command typed in by user Value for COMMAND parameter Value for COMMAND-PARM parameter

UCOM UCOM <blank>

UCOM A UCOM A <blank>

UCOM A,X UCOM A X

UCOM A B,X UCOM A B X

UCOM A,X,Y UCOM A X,Y

Parameter Name Length Type

ERROR-NUMBER (N4) Output

An error number which is reported to the user. The error is brought in the field TITLE and is available in the
PERFORM and DISPLAY events so that it can be presented to the user. See also the field
OUTPUT-ERROR-CODE. If OUTPUT-ERROR-CODE is not set (value is zero), information can be passed to the
user since the current function is not aborted. The error text is taken according to number ranges from the following
libraries:

6800 - 8999: SYSISPS1
 9000 - 9999: are reserved for the user in SYSISPS1.

Parameter Name Length Type

ERROR-TEXT (A75) Output

Text to be displayed. If this field is filled, ERROR-NUMBER is ignored.

Parameter Name Length Type

ERROR-PARM (A75) Output

25Copyright Software AG 2002

Parameter DescriptionOpen NSPF

The ERROR-PARM tokens delimited by a semicolon (;). Parameters to be substituted in the error texts are denoted
as :1: :2:

Parameter Name Length Type

GLOBAL-DATA (A32) Input/Output

Data Area common to all Open NSPF routines.

Parameter Name Length Type

STATIC-DATA (A253) Input/Output

Shared data segment identified by STATIC-ID. The data is always updated when it is changed upon return to Natural
ISPF. The data segment lives as long as the Natural ISPF session lives. If the STATIC-DATA and STATIC-ID are
changed in one operation, the data is updated for the old ID and the new segment for the new ID is returned.

Parameter Name Length Type

STATIC-ID (A2) Input/Output

Identification for a shared data segment. If this ID is changed, the subprogram is invoked again and the appropriate
data segment is returned.

Parameter Name Length Type

OUTPUT-ERROR-CODE(N3) Output

A non-zero value denotes an error situation to Natural ISPF, that is, the current function is aborted and the error
denoted by the fields ERROR-NUMBER, ERROR-TEXT and ERROR-PARM is reported in the previous screen.
This should be used in real error situations.

Examples

The first example program is relevant to sites that run Software AG’s Office System Con-nect. It checks for new
items in the user’s Con-nect Inbasket.

Copyright Software AG 200226

Open NSPFExamples

* Program checks whether something new is in
 * CON-NECT inbasket
 DEFINE DATA
 PARAMETER USING ISP-UC-A
 PARAMETER
 1 #STATIC-DATA(A253)
 1 #GLOBAL-DATA(A32)
 LOCAL
 1 #RC (N2)
 1 #CAB (A8)
 1 #PSW (A8)
 1 #PHONE (P8)
 1 #MAIL (P8)
 1 #INVIT (P8)
 1 #OP-MAIL (P8)
 1 #POST-MAIL (P8)
 END-DEFINE
 MOVE *USER TO #CAB
 CALLNAT ’Z-INBKT’ #RC #CAB #PSW #PHONE #MAIL #INVIT #OP-MAIL #POST-MAIL
 IF #RC NE 0
 MOVE ’Connect error’ TO #ERROR-TEXT
 MOVE 1 TO #OUTPUT-ERROR-CODE
 ELSE
 MOVE ’You have’ TO #ERROR-TEXT
 DECIDE FOR EVERY CONDITION
 WHEN #PHONE NE 0
 COMPRESS #ERROR-TEXT #PHONE ’phones’ INTO #ERROR-TEXT
 WHEN #MAIL NE 0
 COMPRESS #ERROR-TEXT #MAIL ’mail’ INTO #ERROR-TEXT
 WHEN #INVIT NE 0
 COMPRESS #ERROR-TEXT #INVIT ’Invitation’ INTO #ERROR-TEXT
 WHEN NONE
 COMPRESS #ERROR-TEXT ’No mail’ INTO #ERROR-TEXT
 END-DECIDE
 END-IF
 END

The second example program is relevant to BS2000/OSD sites. It translates the command FS(TAT) into the Natural
ISPF command LIST BF to list BS2000/OSD files. In this way, FS and FSTAT become synonyms of the Natural
ISPF command LIST BF *.

27Copyright Software AG 2002

ExamplesOpen NSPF

* This program translates command FS(TAT) ... into LIST BF ..
 * to list BS2000/OSD files
 DEFINE DATA
 PARAMETER USING ISP-UC-A
 PARAMETER
 1 #STATIC-DATA(A253)
 1 #GLOBAL-DATA(A32)
 LOCAL
 1 #WRITTEN-CMD (A128)
 1 #FUNC-PARMS (A128)
 1 #-DEL (A1) CONST <H’FE’>
 END-DEFINE
 *
 EXAMINE #COMMAND FOR FULL ’ ’ REPLACE FIRST WITH #-DEL
 SEPARATE #COMMAND LEFT INTO #WRITTEN-CMD #FUNC-PARMS
 WITH DELIMITER #-DEL
 IF #FUNC-PARMS = ’ ’
 MOVE ’*’ TO #FUNC-PARMS
 END-IF
 COMPRESS ’LS BF’ #FUNC-PARMS INTO #COMMAND
 END

Copyright Software AG 200228

Open NSPFExamples

	Open NSPF
	Overview
	Customizing Natural ISPF
	Multi-Operations Management
	User Objects and User Commands

	Common Subjects of Open NSPF Routines
	Natural ISPF Error Handling
	Command Variable
	Data Usage in an Open NSPF Routine

	Defining a User Object
	Site Control Table: Adding a User Object
	Site Control Table: Adding a User Function
	Site Control Table: Relating User Objects to Functions
	Event Logic
	Session Types
	Session Types and Events
	Event Description
	Parameter Description
	Example

	Defining a User Command
	Site Control Table: Adding a User Command
	Parameter Description
	Examples

